Докажите , что прямая , содержащая середины двух параллельных брод окружности, проходит через её центр.
Докажите , что прямая , содержащая середины двух параллельных брод окружности, проходит через её центр.
Ответ(ы) на вопрос:
Как известно, перпендикуляр, опущенный из центра окружности на хорду, делит ее пополам.Значит перпендикуляр точно проходит через центр (по условию он хорду делит пополам ). Прямые паралельны, значит их перпендикуляр совпадает и проходит через центр Концы хорд соединяем с центром окружности. Получаем два равнобедренных треугольника с вершинами в одной точке - центром окружности. Стороны равнобедренных треугольников = радиусу.Из середины равнобедренных треугольников проводим медианы, которые являются высотами. Прямая соединяющая хорды перпендикулярна к ним и проходит через центр окружности.
Не нашли ответ?
Похожие вопросы