Докажите что в любом выпуклом четырехугольнике сумма расстояний от точки взятой внутри четырехугольника, до его вершин больше полупериметра.

Докажите что в любом выпуклом четырехугольнике сумма расстояний от точки взятой внутри четырехугольника, до его вершин больше полупериметра.
Гость
Ответ(ы) на вопрос:
Гость
обозначим расстояния от точки до вершин m1, m2, m3 m4. а стороны обозначим a, b, c, d. Рассмотрим каждый из четырех треугольников, образованных этими отрезками: m1 m2 a, m2 m3 b, m3 m4 c и m4 m1 d. из первого треугольника следует, что m1+m2>a, из второго m2+m3>b, из третьего m3+m4>c и из четвертого m4+m1>d. складываем все эти неравенства, получаем: 2m1+2m2+2m3+2m4>a+b+c+d=P(периметр), значит m1+m2+m3+m4>(a+b+c+d)/2=P/2 Как бы так и есть...
Не нашли ответ?
Ответить на вопрос
Похожие вопросы