Докажите, что в произвольном треугольнике прямые , проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке.
Докажите, что в произвольном треугольнике прямые , проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке.
Ответ(ы) на вопрос:
Гость
Я тоже тут отмечусь, уж простите :)
Треугольник ABC, стороны (противолежащие углам) a, b, c,
Точка K делит сторону BC = a на отрезки CK = x и BK = a - x;
Точка M делит сторону AC = b на отрезки AM = y и CM = b - y;
Точка N делит сторону AB = c на отрезки BC = z и AC = c - z;
Получается из условия деления периметра пополам
b + x = c + a - x; x = (c + a - b)/2 = p - b; CK = p - b;
где p - полупериметр ABC; p = (a + b + c)/2;
a - x = BK = p - c;
Аналогично
AM = p - c; CM = p - a;
BN = p - a; AN = p - b;
То есть AN*BK*CM/(BN*AM*CK) = (p - b)*(p - c)*(p - a)/((p - a)*(p - c)*(p - b)) = 1;
Остается сослаться на обратную теорему Чевы.
Не нашли ответ?
Похожие вопросы