Докажите что значение выражения не зависит от (х+1)2-х(х2+3х+3)  Пожалуйста помогите!!

Докажите что значение выражения не зависит от (х+1)2-х(х2+3х+3)  Пожалуйста помогите!!
Гость
Ответ(ы) на вопрос:
Гость
Выражение: (x+1)*2-x*(x2+3*x+3) Ответ: -x+2-x*x2-x^2*3 Решаем по действиям: 1. (x+1)*2=x*2+2 2. x*(x2+3*x+3)=x*x2+x^2*3+x*3 x*(x2+3*x+3)=x*x2+x*3*x+x*3 2.1. x*x=x^2 x*x=x^(1+1) 2.1.1. 1+1=2 +1 _1_ 2 3. x*2+2-(x*x2+x^2*3+x*3)=x*2+2-x*x2-x^2*3-x*3 4. x*2-x*3=-1*x Решаем по шагам: 1. x*2+2-x*(x2+3*x+3) 1.1. (x+1)*2=x*2+2 2. x*2+2-(x*x2+x^2*3+x*3) 2.1. x*(x2+3*x+3)=x*x2+x^2*3+x*3 x*(x2+3*x+3)=x*x2+x*3*x+x*3 2.1.1. x*x=x^2 x*x=x^(1+1) 2.1.1.1. 1+1=2 +1 _1_ 2 3. x*2+2-x*x2-x^2*3-x*3 3.1. x*2+2-(x*x2+x^2*3+x*3)=x*2+2-x*x2-x^2*3-x*3 4. -x+2-x*x2-x^2*3 4.1. x*2-x*3=-1*x
Не нашли ответ?
Ответить на вопрос
Похожие вопросы