Еще одно нетривиальное решение. В правильном треугольнике АВС проведена биссектриса АК и BL. Точка О-точка их пересечения. Найдите площадь треугольника LOK, если АС=8√3

Еще одно нетривиальное решение. В правильном треугольнике АВС проведена биссектриса АК и BL. Точка О-точка их пересечения. Найдите площадь треугольника LOK, если АС=8√3
Гость
Ответ(ы) на вопрос:
Гость
смотри рисунок.  не будем говорить про банальные вещи - у равностороннего треугольника все стороны равны, все углы =60, медианы , биссектрисы и высоты являются одними и теми же линиями и пересекаются в одной точке. Просто вспомним 1) нахождение площади треугольника  = половина произведения сторон на синус угла между ними. В данном случае - стороны равны, угол =60 2) то, что ЛК естественно, средняя линия и равна половине АВ  (Л и К -середины соответствующих сторон) 3) то, что площадь АВО равна трети исходного ( все три треугольника, составляющих исходный, равны по ... (например, по трем сторонам - т.к. основания равны, а стороны являются радиусами описанной окружности) 4) площади подобных треугольников пропорциональны квадрату коэфф. подобия ( основания в данном случае различаются в 2 раза , значит и высоты тоже в 2, площадь в 2*2=4 раза) а теперь решение 8√3*8√3*sin60 /2(площадь исходного) / 3 (площадь желтого) /2² =  4√3 все.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы