Геометрическое приложение определенного ининтеграла вычислить площадь фигуры, ограниченной заданными линиями 1. Y=x^2+2x+1.  Y=0.  X=-3.  X=2 2.y=1/4x^3.   Y=2x 3.y=sinX.  Y=0. X= -pi/6   X=pi

Геометрическое приложение определенного ининтеграла вычислить площадь фигуры, ограниченной заданными линиями 1. Y=x^2+2x+1.  Y=0.  X=-3.  X=2 2.y=1/4x^3.   Y=2x 3.y=sinX.  Y=0. X= -pi/6   X=pi
Гость
Ответ(ы) на вопрос:
Гость
1. F(x)= 1/3(x+1)^3 F(2)=1/3*3^3=9 F(-3)=-8/3 S=9+8/3=35/3   2. F(x)=x^4-x^2 2x=1/4x^3  x=0 x=2sqrt(2) x=-2sqrt(2) F(0)=0 F(2sqrt(2)=64-8=56 S=56*2=112   3. F(X)=-cosx F(pi)=1                         F(-pi/6)=-sqrt(3)/2 S=1+sqrt(3)/2
Не нашли ответ?
Ответить на вопрос
Похожие вопросы