Ответ(ы) на вопрос:
∫xsin(x)dx = -∫-cos(x)dx - xcos(x) + С= ∫cos(x)dx - xcos(x) + С= sin(x) - xcos(x) + С
∫xsinxdx
Применим правило интегрирования по частям:
u=x,, du=dx, dv=sinxdx, v=-cosx.
Тогда имеем:
∫xsinxdx=-xcosx+∫cosxdx=-xcosx+sinx+C=sinx-xcosx+C
Не нашли ответ?
Похожие вопросы