Из круга вырезан сектор с центральным углом [latex] \alpha [/latex]. Из оставшейся части круга свёрнута воронка. При каком значении угла [latex] \alpha [/latex] вместимость воронки будет наибольшей? Задача решается через произв...
Из круга вырезан сектор с центральным углом [latex] \alpha [/latex]. Из оставшейся части круга свёрнута воронка. При каком значении угла [latex] \alpha [/latex] вместимость воронки будет наибольшей?
Задача решается через производную.
Желателен развёрнутый ответ.
Ответ(ы) на вопрос:
Гость
Алгоритм таков:
1. Длина окружности L(окр) = 2*pi*R(окр) , длина сектора L(сект) = R(окр) *alpha.
Т. о. , периметр воронки L(вор) = L(окр) - L(сект)
2. R(воронки) = L(вор) /(2*pi)
высота воронки H(вор) = sqrt( R(окр) ^2 - R(воронки) ^2);
3. Имея функции R(вор) от alpha и H(вор) от alpha, имеем функцию для объема
V(вор) = pi*R(вор) ^2*H(вор) /3
Это функция от параметра alpha, берем производную, приравниваем к нулю, находя экстремум. Этот экстремум будет максимумом функции (минимумы - при alpha = 0 и alpha = 2*pi)
прости решать некогда
Не нашли ответ?
Похожие вопросы