Из Майкопа в Дагомыс по туристическому маршруту «К Черному морю» вышел турист. Одновременно навстречу ему из Дагомыса выехал всадник. Через 60 часов турист оказался ровно посередине между Майкопом и всадником. Ещё через 15 часо...

Из Майкопа в Дагомыс по туристическому маршруту «К Черному морю» вышел турист. Одновременно навстречу ему из Дагомыса выехал всадник. Через 60 часов турист оказался ровно посередине между Майкопом и всадником. Ещё через 15 часов они повстречались и продолжили свой путь. Сколько часов ушло у туриста на весь путь? Скорости туриста и всадника постоянны.
Гость
Ответ(ы) на вопрос:
Гость
Известно, что через 60 часов после выхода, турист оказался ровно посередине между Майкопом и всадником. Тот путь, что впереди, он преодолел совместно с всадником за 15 часов. Найдем во сколько раз скорость туриста меньше скорости всадника Пусть скорость туриста х км/ч, а скорость всадника у км/ч, тогда (х + у) км/ч - скорость сближения. S₁ = S₂ 60х = 15(х + у) 60х = 15х + 15у 60х - 15х = 15у 45х = 15у 3х = у у/х = 3 (раза) - во столько раз скорость туриста меньше скорости всадника. Во сколько раз меньше скорость, во столько же раз больше время, затраченное на один и тот же путь. До момента встречи и турист, и всадник провели в пути по: 60 + 15 = 75 (ч). На путь пройденный всадником, турист затратит в 3 раза больше времени: 75 * 3 = 225 (ч). Всего на весь путь у туриста уйдет: 75 + 225 = 300 (ч). Ответ: 300 часов.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы