Из пункта А в пункт В, расстояние между которыми равно 19 км, вышли одновременно навстречу друг другу два пешехода и встретились в 9 км от пункта А. Найдите скорость кажlого,если известно, что пешеход,вышtдший из А, шёл со скор...

Из пункта А в пункт В, расстояние между которыми равно 19 км, вышли одновременно навстречу друг другу два пешехода и встретились в 9 км от пункта А. Найдите скорость кажlого,если известно, что пешеход,вышtдший из А, шёл со скоростью, на 1 км/ч большей,чем другой пешеход, и сделал в пути 30-минутную остановку.
Гость
Ответ(ы) на вопрос:
Гость
до встречи первый пешеход прошёл 9 км, а второй 19-9=10 км. пусть пешеход из Б шёл со скоростью х (км/ч), тогда пешеход из А шёл со скоростью х+1 (км/ч) на свой путь пешеход из Б затратил 10/х (ч) пешеход из А затратил на свой путь 9/(х+1)+1/2 (ч). так как они встретились, значит в пути были одинаковое время поэтому 9/(х+1)+1/2=10/х 10/х-9/(х+1)=1/2 приведём к общему знаменателю 2х(х+1). Дополнительный множитель у первой дроби 2(х+1), дополнительный множитель у второй дроби 2х, а у третьей х(х+1) 10*2(х+1)-9*2х=1*х(х+1) 20х+20-18х=x^2+x 2x+20=x^2+x x^2-x-20=0. по теореме Виета, произведение корней = -20, а сумма корней 1. Это числа 5 и -4. 5*(-4)=-20,5+(-4)=1. скорость не может быть отрицательным числом, поэтому скорость пешехода из Б=5 (км/ч), тогда скорость пешехода из А =6 км/ч
Не нашли ответ?
Ответить на вопрос
Похожие вопросы