Із точки до прямої проведено перпендикуляр і 2 похилі завдовжки 17 і 10см.Проекції похилих відносяться як2;5 знайдіть довжину перпендикуляра

Із точки до прямої проведено перпендикуляр і 2 похилі завдовжки 17 і 10см.Проекції похилих відносяться як2;5 знайдіть довжину перпендикуляра
Гость
Ответ(ы) на вопрос:
Гость
Точка вне плоскости А. Отрезки от неё АВ = 10 и АС =17. Перпендикуляр из точки А на плоскость обозначим как AD. Проекции отрезков, которые надо найти BD и CD По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения АВ и АС подставить. 100 = BD^2 + 289 - CD^2. Или CD^2 - BD^2 =189. Слева разность квадратов. Причём известна разность проекций. Можем получить СD+BD = 21. Сумму знаем, разность знаем. Решая систему получим CD = 15, BD =6
Гость
Пусть ВН - перпендикуляр к прямой АС, АВ=17 см - наклонная, ВС=10 см - наклонная, АН:НС=5:2. Пусть х - коэффициент пропорциональности, тогда АН=5х, НС=2х. Рассмотрим ΔАНВ - прямоугольный, по т.Пифагора ВН²=АВ²-АН²= =17²-(5х)²=289-25х². Рассмотрим ΔВНС - прямоугольный, по т.Пифагора ВН²=ВС²-НС²= =10²-(2х)²=100-4х². Приравниваем полученные выражения и находим х: 289-25х²=100-4х²; 25x²-4x²=289-100; 21x²=189; x²=9; x=3. Находим ВН=√(100-4*3²)=√(100-36)=√64=8 (см). Ответ: 8 см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы