Из вершины прямого угла прямоугольного треугольника с катетами 15 и 20 см проведен перпендикуляр длинной 16 см к плоскости треугольника. найти расстояние от концов перпендикуляра до гипотенузы.
Из вершины прямого угла прямоугольного треугольника с катетами 15 и 20 см проведен перпендикуляр длинной 16 см к плоскости треугольника. найти расстояние от концов перпендикуляра до гипотенузы.
Ответ(ы) на вопрос:
Гость
АВС - данный прям. тр-ик. Угол С - прямой, АС= 15, ВС = 20. Восстановим перпендикуляр СО из точки С к плоскости АВС. СО = 16. Проведем ОК перп. АВ, тогда СК тоже перп. АВ (по т. о 3-х перпенд). Найдем сначала гипотенузу АВ: АВ = кор( 225 + 400) = 25. Теперь по известной формуле(h=ab/c) найдем высоту СК, опущенную на гипотенузу: СК = 15*20/25 = 12. Теперь из прям. тр-ка ОКС найдем искомое расстояние ОК от конца О перпендикуляра СО до гипотенузы АВ: ОК = кор(ОСкв + СКкв) = кор(256 + 144) = 20. Ответ: 20 см. Примечание: Расстояние СК до другого конца перпендикуляра равно 12 см. Просто в условии непонятно - найти одно, или два расстояния.
Не нашли ответ?
Похожие вопросы