Из всех правильных шестиугольных призм с периметром боковой грани, равным 16 сам, найдите объём и площадь боковой поверхности той призмы, которая имеет наименьшую меньшую диагональ. Проблема в том, что как найти эту наименьшую ...

Из всех правильных шестиугольных призм с периметром боковой грани, равным 16 сам, найдите объём и площадь боковой поверхности той призмы, которая имеет наименьшую меньшую диагональ. Проблема в том, что как найти эту наименьшую меньшую диагональ. Если кто-то знает, то помогите пж! Дам сотку баллов)
Гость
Ответ(ы) на вопрос:
Гость
Обозначим сторону основания призмы как а, высоту призмы - h. Периметр боковой грани: P=2(a+h) ⇒ a+h=P/2=8 см.  h=8-a. На рисунке АС1 - меньшая диагональ призмы. АА1С1С - прямоугольник. В треугольнике АВС ∠АВС=120°, как внутренний угол правильного шестиугольника. По теореме косинусов АС²=АВ²+ВС²-2АВ·ВС·cos120=a²+a²-2·a·a·(-0.5)=3a². В тр-ке АСС1 АС1²=d²=АС²+СС1²=3а²+(8-а)²=3а²+64-16а+а²=4а²-16а+64. Нам нужна диагональ наименьшего размера. Предположим, что d=0, тогда d²=4a²-16a+64=0, а²-4а+16=0, Дискриминант D=b²-4ac=16-4·16=-48, квадратное уравнение не решается. Чтобы решить квадратное уравнение с минимальным значением для диагонали, нужно привести уравнение к виду, когда дискриминант D=0, подогнав значение "с" в квадратном уравнении. У нас с=16, заменим на 4. а²-4а+4=0, D=16-4·4=0. а₁,₂=4/2=2. Сторона основания равна 2 см, высота h=8-a=6 cм. Площадь основания: Sосн=6·(a²√3/4)=3a²√3/2=3·4√3/2=6√3 см². Площадь боковой поверхности: Sбок=Рh=6ah=6·2·6=72 см². Полная поверхность: Sп=Sбок+2Sосн=72+2·6√3=12(6+√3) см² - это ответ1. Объём призмы: V=hSосн=6·6√3=36√3 см³ - это ответ2.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы