Ответ(ы) на вопрос:
[latex]cosx=cos(2* \frac{x}{2})=cos^{2}( \frac{x}{2})-sin^{2}( \frac{x}{2})[/latex]
[latex]sinx=sin(2* \frac{x}{2})=2*cos( \frac{x}{2})*sin( \frac{x}{2})[/latex]
[latex]13=13cos^{2}( \frac{x}{2})+13sin^{2}( \frac{x}{2})[/latex]
[latex]5cos^{2}( \frac{x}{2})-5sin^{2}( \frac{x}{2})+12*2*cos( \frac{x}{2})*sin( \frac{x}{2})-13cos^{2}( \frac{x}{2})-13sin^{2}( \frac{x}{2})=0[/latex]
[latex]-8cos^{2}( \frac{x}{2})-18sin^{2}( \frac{x}{2})+24*cos( \frac{x}{2})*sin( \frac{x}{2})=0[/latex]
[latex]4+9tg^{2}( \frac{x}{2})-12tg( \frac{x}{2})=0[/latex]
[latex]9tg^{2}( \frac{x}{2})-12tg( \frac{x}{2})+4=0[/latex]
Замена: [latex]tg( \frac{x}{2})=t[/latex]
[latex]9t^{2}-12t+4=0, D=0[/latex]
[latex]t= \frac{12}{18}=\frac{2}{3}[/latex]
[latex]tg( \frac{x}{2})=\frac{2}{3}[/latex]
[latex]\frac{x}{2}=arctg(\frac{2}{3})+ \pi k[/latex], k∈Z
[latex]x=2arctg(\frac{2}{3})+ 2\pi k[/latex], k∈Z
Не нашли ответ?
Похожие вопросы