Катеты прямоугольного треугольника АСВ (уголС=90градусов) равны АС=3см и ВС=4см. Проведена окружность (С,R), R=2,4 см. Каково взаимное расположение прямой АВ и этой окружности?

Катеты прямоугольного треугольника АСВ (уголС=90градусов) равны АС=3см и ВС=4см. Проведена окружность (С,R), R=2,4 см. Каково взаимное расположение прямой АВ и этой окружности?
Гость
Ответ(ы) на вопрос:
Гость
Чтобы установить взаимное расположение АВ и окружности нужно вычислить расстояние от С до АВ, то есть высоту СМ. АВ=√(АС²+ВС²)=5 см Пусть АМ=х, тогда ВМ=5-х В тр-ке АСМ СМ²=АС²-АМ²=9-х² В тр-ке ВСМ СМ²=ВС²-ВМ²=16-(5-х)² 9-х²=16-(5-х)² 9-х²=16-25+10х-х² 10х=18 х=1.8 СМ=√(9-1.8²)=2.4 см Т.к. радиус нашей окружности R=2.4 см равен высоте тр-ка СМ=2.4 см, то АВ - касательная к окружности.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы