Катеты прямоугольного треугольника АВС равны 15 и 20 см. Из вершины прямого угла С проведен отрезок СD, перпендикулярный плоскости этого треугольника СD=16 см. Найти расстояние от точки D до гипотенузы АВ
Катеты прямоугольного треугольника АВС равны 15 и 20 см. Из вершины прямого угла С проведен отрезок СD, перпендикулярный плоскости этого треугольника
СD=16 см.
Найти расстояние от точки D до гипотенузы АВ
Ответ(ы) на вопрос:
Гость
АВС - египетский треугольник (подобный тр-ку со сторонами 3,4,5), его стороны 15,20,25. Высота, проведенная к гипотенузе АВ - пусть это СН - вычисляется так СН*25= 15*20 (это удвоенная площадь АВС, записанная 2 способами); СН = 12. Плоскость DCH перпендикулярна АВ, поскольку АВ перпендикулярно DC и CH. Поэтому искомое расстояние находится из прямоугольного теругольника DCH с катетами 12 и 16. Это опять египетский треугольник, гипотенуза 20. Ответ DH = 20. Напомню - из за того, что 3^2 + 4^2 = 5^2; подобие такому треугольнику позволяет не заниматься вычислением длинных корней, а сразу записать результат. Впрочем, кому охота, запишите теорему Пифагора и сосчитайте - результат будет тот же.
Не нашли ответ?
Похожие вопросы