Ответ(ы) на вопрос:
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.Пусть диаметр АВ перпендикулярен к хорде СD (черт. 312). Требуется доказать, что
СЕ = ЕD, СВ = ВD, СА = DА.Соединим точки С и D с центром окружности О. В равнобедренном треугольнике
СОD отрезок ЕО является высотой, проведённой из вершины О на основание СD; следовательно, ОЕ является и медианой и биссектрисой, т. е. СЕ = ЕD и / 1 = / 2. Но /1 и / 2 суть центральные углы. Отсюда равны и соответствующие им дуги, а именно
СВ = ВD. Дуги СА и ВА также равны между собой, как дополняющие равные дуги до полуокружности.
Не нашли ответ?
Похожие вопросы