Куб поделен на шесть четырехугольных пирамид следующим способом: внутри куба выбрана точка, которая соединена со всеми восемью вершинами куба. Объемы пяти из этих пирамид - это числа 5, 6, 8, 14 и 17. Чему равен объем шестой пи...

Куб поделен на шесть четырехугольных пирамид следующим способом: внутри куба выбрана точка, которая соединена со всеми восемью вершинами куба. Объемы пяти из этих пирамид - это числа 5, 6, 8, 14 и 17. Чему равен объем шестой пирамиды?
Гость
Ответ(ы) на вопрос:
Гость
Пусть сторона куба равна а. Внутри куба находится точка Е, которая является вершиной всех шести пирамид. В двух пирамидах, основаниями которых являются противоположные грани куба, высоты лежат на одной прямой и их сумма равна стороне куба: h₁+h₂=a. Объём пирамиды: V=a²h/3. Сумма объёмов этих двух пирамид: V1+V2=a²h₁/3+a²h₂/3=(a²/3)·(h₁+h₂)=a³/3. Таким же образом получаем суммы объёмов оставшихся пар пирамид, с противолежащими основаниями. Все они равны а³/3. Из условия можно заметить, что 5+17=8+14=22 - это сумма объёмов пирамид с противолежащими основаниями, значит объём шестой пирамиды равен 22-6=16 (ед³) - это ответ.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы