[latex]\sqrt{x^{2}-2x-3}\ \textless \ 1 [/latex]

[latex]\sqrt{x^{2}-2x-3}\ \textless \ 1 [/latex]
Гость
Ответ(ы) на вопрос:
Гость
В левой части неравенства стоит квадратный корень, который принимает только неотрицательные значения, следовательно, чтобы неравенство имело решения, правая часть должна быть положительной..Это условие в данном неравенстве соблюдено. ОДЗ: x^2-2x-3>=0 x^2-2x-3=0 D=(-2)^2-4*1*(-3)=16 x1=(2-4)/2=-1;  x2=(2+4)/2=3 ____+____[-1]____-____[3]____+____ x e ( -беск.; -1]U[3; + беск.) Итак, чтобы решить неравенство, возведем обе его части в квадрат: x^2-2x-3<1 x^2-2x-3-1<0 x^2-2x-4<0 x^2-2x-4=0 D= (-2)^2-4*1*(-4)=20 x1= (2-2V5)/2= 1-V5 (V- квадратный корень) x2= (2+2V5)/2=1+V5 _____+_____(1-V5)____-_____(1+V5)____+_______ x e (1-V5; 1+V5) С учетом ОДЗ: x e (1-V5; -1] U [3; 1+V5)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы