Маленькая девочка Надя хочет заниматься в математическом кружке. Но она любит прыгать школьными лестнице. За один раз Надя может или прыгнуть на одну ступеньку вверх, или перепрыгнуть вверх через одну ступеньку. Учитель математ...
Маленькая девочка Надя хочет заниматься в математическом кружке. Но она любит прыгать школьными лестнице. За один раз Надя может или прыгнуть на одну ступеньку вверх, или перепрыгнуть вверх через одну ступеньку. Учитель математики пообещал взять Надю в свой кружок, если она простибае по лестнице всеми способами. Сколько дней придется ждать девочке осуществления своей мечты о кружке, если каждый день она будет прыгать только одним способом, а лестница имеет 13 ступеней
Ответ(ы) на вопрос:
Очевидно, что на первую ступеньку можно попасть лишь одним способом - с пола. Для попадания на вторую ступеньку таких способов уже 2: непосредственно с пола или с первой ступеньки. Аналогично, на третью ступеньку можно попасть или со второго, или с первого ступенек. Поэтому общее количество способов оказаться на третьем ступени равен сумме количеств способов попадания на первую и на вторую ступенек, тоесть 1+2=3. Аналогично, устанавливаем, что количество способов окажется на четвертом ступеньке равен сумме количеств способов попадания на вторую и третью ступеньки, тоесть 2+3=5, далее можно не писать. Поэтому, если [latex]A_n,A_{n+1[/latex] и [latex]A_{n+2}[/latex] - это количество способов, которыми модно попасть соответсвенно на [latex]n[/latex],
[latex](n+1)-y[/latex] и [latex](n+2)-y[/latex] ступеньки, то
[latex]A_{n+2}=A_n+A_{n+1}.[/latex] Пользуясь полученной формулой, последственно определим:
[latex]A_1=1;A_2=2;A_3=3,A_4=5,A_5=8,A_6=13,A_7=21, \\ A_8=34,A_9=55,A_1_0=89,A_1_1=144,A_1_2=233;A_1_3=377[/latex]
Следовательно, Наде придется ждать больше года.
Не нашли ответ?
Похожие вопросы