Медіана, проведена до гіпотенузи прямокутного трикутника, дорівнює 10 см і ділить прямий кут у відношенні 1:2. Знайдіть гіпотенузу трикутника і його найменшу середню лінію.

Медіана, проведена до гіпотенузи прямокутного трикутника, дорівнює 10 см і ділить прямий кут у відношенні 1:2. Знайдіть гіпотенузу трикутника і його найменшу середню лінію.
Гость
Ответ(ы) на вопрос:
Гость
АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана. Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС. В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е. ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см. Медиана ВМ делит прямой угол в отношении 1 : 2, значит угол АВМ = 90 : 3 * 2 = 60 градусов угол СВМ = 90 - 60 = 30 градусов. Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание. Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60. Значит тр-ник АМВ равносторонний, АВ = 10 см. Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 5 см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы