Медиана прямоугольного треугольника, проведенная к гипотинузе, разбивает его на два треугольника. Докажите, что площади этих треугольников равны.
Медиана прямоугольного треугольника, проведенная к гипотинузе, разбивает его на два треугольника. Докажите, что площади этих треугольников равны.
Ответ(ы) на вопрос:
Треугольник АВС, опишем возле него окружность.
Центр окружности О будет совпадать с серединой гипотенузы (это доказано).
Значит ВО-медиана, а треугольник АВО и СВО-равнобедренные ( АО=ОВ, ОВ=ОС радиусы одной окружности).
Sabo=1/2*AO*OB*sin АOВ;
Scbo=1/2*AO*OС*sin АОС.
Углы АОВ и АОС -смежные, а синусы смежных углов равны.
Значит площади треугольников равны
Не нашли ответ?
Похожие вопросы