На рисунке АС // ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка CD. 

На рисунке АС // ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка CD. 
Гость
Ответ(ы) на вопрос:
Гость
Т. к. AC||BD, то накрест лежащие углы АСМ и BDM равны. Также вертикальные углы АМС и DMB равны. Значит и углы САМ и MBD тоже равны. АМ=МВ по условию, тогда треугольник АМС равен треугольнику DMB по 2-му признаку равенства треугольников. Следовательно, CM=MD, значит М - середина отрезка CD
Гость
Рассмотрим треугольники ACM и MDB и докажем что они равны: 1) AM=MB (так как М середина отрезка AB) 2) угол А= угол В (так как являются накрестлежащими углами при параллельных прямых AC и DB и секущей АВ) 3) угол AMC= угол DMB (так как вертикальные) следовательно треугольник ACM = MDB Раз треугольники равны значит CM=MD, если стороны равны, значит М середина
Не нашли ответ?
Ответить на вопрос
Похожие вопросы