Найдите боковую сторону равнобедренной трапеции, если ее меньшее основание равно боковой стороне, площадь равна 48√3 см^2, а острый угол трапеции равен 60°

Найдите боковую сторону равнобедренной трапеции, если ее меньшее основание равно боковой стороне, площадь равна 48√3 см^2, а острый угол трапеции равен 60°
Гость
Ответ(ы) на вопрос:
Гость
Обозначим вершины трапеции буквами ABCD, AB - меньшее основание, CD - большее, AD и BC - боковые стороны. Проведем высоту AH и BH₁ Рассмотрим ΔDAH ∠DHA = 90° - Δ прямоугольный ∠ADH = 60° - по условию ∠DAH = 180° - (90°+60°) = 30° В прямоугольном треугольнике катет, лежащий напротив угла 30°, в 2 раза меньше гипотенузы этого треугольника. Пусть DH = x, тогда AD=2x AD = AB = 2x - по условию DC = x+2x+x = 4x (DH=x, BH₁=x, HH₁=AB=2x) AH по теореме Пифагора = [latex] \sqrt{4x^2-x^2}= \sqrt{3x^2}= x\sqrt{3} [/latex] S трапеции = (a+b)/2 * h, где a и b - основания трапеции, h - высота. a = AB = 2x b = DC = 4x h = AH = x√3 S = (2x+4x)/2 * x√3 = 3x * x√3 = 3x²√3 S = 48√3 см² 3x²√3 = 48√3 | : 3√3 x² = 16 x = 4 см Боковая сторона AD = 2x = 4*2 = 8 см Ответ: 8 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы