Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из его катетов равен 20 см, а проекция второго катета на гипотенузу равна 9.

Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из его катетов равен 20 см, а проекция второго катета на гипотенузу равна 9.
Гость
Ответ(ы) на вопрос:
Гость
Диаметр окружности, описанной вокруг прямоугольного треугольника - это его гипотенуза. Один катет a = 20 см. Проекция второго катета b на гипотенузу c равна b*cos A Длина самой гипотенузы c = a/sin A. И есть еще теорема Пифагора: a^2 + b^2 = c^2 Получается система: b*cos A = 9; отсюда b = 9/cos A c = 20/sinA c^2 = 20^2 + b^2 Подставляем 1 и 2 уравнение в 3 уравнение. 400/sin^2 A = 400 + 81/cos^2 a Умножаем всё на sin^2A и на cos^2 A = 1 - sin^2 A 400(1 - sin^2 A) = 400sin^2A*(1 - sin^2A) + 81*sin^2A Замена sin^2 A = x ∈ [0; 1] 400 - 400x = 400x - 400x^2 + 81x 400x^2 - 881x + 400 = 0 D = 881^2 - 4*400*400 = 776161 - 640000 = 136161 = 369^2 x1 = sin^2 A = (881 + 369)/800 = 1250/800 > 1 - не может быть. x2 = sin^2 A = (881 - 369)/800 =  512/800 = 16/25 sin A = 4/5; cos^2 A = 9/25; cos A = 3/5 b = 9/cos A = 9 : (3/5) = 9*5/3 = 15 c = 20/sin A = 20 : (4/5) = 20*5/4 = 25 Ответ: 25.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы