Найдите количество различных натуральных делителей числа 6^4 * 7^3 * 8^2
Найдите количество различных натуральных делителей числа 6^4 * 7^3 * 8^2
Ответ(ы) на вопрос:
раскладываем на простые множители и получаем:
2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 · 3 · 3 · 7 · 7 · 7
представляем в следующем виде:
2^10*3^4*7^3
теперь берем степени этих чисел, прибавляем к каждой единичку и все перемножаем:
(10+1)*(4+1)*(3+1)
и получаем ответ:
220 делителей
Не нашли ответ?
Похожие вопросы