Найдите периметр и площадь прямоугольного треугольника, учитывая, что его высота делит гипотенузу на отрезки, равные 3 м и 12 м.

Найдите периметр и площадь прямоугольного треугольника, учитывая, что его высота делит гипотенузу на отрезки, равные 3 м и 12 м.
Гость
Ответ(ы) на вопрос:
Гость
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена.  Сторона, к которой проведена высота, равна 3+12=15 м.  Высоту нужно найти.  Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы