Найдите периметр прямоугольного участка площадью 91 квадратный метр , если одна из сторон которого больше другой на 6 метров

Найдите периметр прямоугольного участка площадью 91 квадратный метр , если одна из сторон которого больше другой на 6 метров
Гость
Ответ(ы) на вопрос:
Гость
Решение: S = 91 - площадь. P = ? - периметр. Площадь равна произведению сторон. 0) x1 + x2 = P - формула периметра. 1) X * Y = 91 - формула площади. 2) X = 6 + Y - вторая сторона на шесть раз больше другой. Подставим второе уравнение в первое. (6+Y)*Y = 91 6*Y + Y^2 = 91 - получили квадратное уравнение.(Y^2 - Y в квадрате), уравнения вида ax2+bx+c=0 Найдем его корни через дискриминант. D = b^2 - 4*a*c - формула дискриминанта. D = 6^2 + 4*1*91 D = 400 Найдем корни теперь: X1,2 = (-b +/- D^1/2)/2a - формула нахождения корней т.е для x1 =(-b + D^1/2)/2a x2 = (-b - D^1/2)/2a Получаем X1 = 7 X2 = -13 Берем X1 =7 - он больше нуля. Подставляем теперь его в формулу 2 вместо Y. X = 6 + 7 Теперь ищем периметр P = 7 + 13; P = 20. Проверяем ответ 7 * 13 = 91.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы