Найдите тупой угол ромба, если его сторона равна среднепропорцианальному значению диагоналей

Найдите тупой угол ромба, если его сторона равна среднепропорцианальному значению диагоналей
Гость
Ответ(ы) на вопрос:
Гость
если обозначить диагонали ромба (х) и (у), то условие запишется: a² = x*y из прямоугольного треугольника, образованного диагоналями ромба, (известно, что диагонали ромба взаимно перпендикулярны))) по т.Пифагора можно записать: a² = (x/2)² + (y/2)² --->> x² + y² = 4xy (x/y)² - 4(x/y) + 1 = 0          D=16-4=12 (x/y) = 2-√3          или          (x/y) = 2+√3 найденное отношение --это тангенс половины искомого угла... меньшее выражение --тангенс острого угла (тангенс монотонно возрастает на всей области определения))) tg(α/2) = 2+√3 tg(α) = 2*tg(α/2) / (1-tg²(α/2)) tg(α) = 2(2+√3) / (-2*(3+2√3)) = -(2+√3) / (3+2√3) = -(2+√3)(3-2√3) / (-3) tg(α) = -√3 / 3 --->> α = 150°
Не нашли ответ?
Ответить на вопрос
Похожие вопросы