Найдите все числа, которые в 13 раз больше суммы своих цифр.
Найдите все числа, которые в 13 раз больше суммы своих цифр.
Ответ(ы) на вопрос:
Двузначные числа не подходят, так как в этом случае, так как в этом случае получаем уравнение 13 * (x + y) = 10 * x + y , которое не имеет положительных корней. Четырехзначные тоже не подходят, так как сумма их цифр не превышает 36, а 36 * 13 = 468 < 1000. Поэтому данное число - трехзначное и получаем уравнение 100 * x + 10 * y + z = 13 * (x + y + z) 87 * x - 3 * y - 12 * z = 0 y + 4 * z = 29 * x Левая часть не превышает 50, поэтому х=1. Тогда возможны такие варианты 1) y = 1 , z = 7 2) y = 5 , z = 6 3) y = 9 , z = 5 Итак, искомые числа 117, 156 и 195
Начнем с 2-х-значных: 10х+у = 13х+13у, где х и у - натуральные числа от 1 до 9 и 0(для разряда единиц) 3х+12у = 0 - невыполнимо при натуральных х и у. Переходим к 3-х-значным: 100х + 10у + z = 13x + 13y + 13z 87x = 3y+12z 29x = y + 4z Видим, что х может быть равен только 1, так как при х>1, правая часть не будет равняться левой ( максимально возможное значение правой части при у = z = 9 и равно 45) Итак получили: y+4z=29 Для y,z - натуральных от 1 до 9, очевидно, что z может равняться только 5,6,7 Тогда : при z = 5, y =9 при z = 6, y = 5. при z = 7, y = 1 Итак получились числа: 195;156;117 Для 4 и далее значных чисел рассмотрение задачи теряет смысл, так как максимально возможная сумма цифр 4-значного числа равно 9*4 = 36. И если его умножить на 13 ника не получится 4-значное число.. Ответ: 195; 156; 117.
Не нашли ответ?
Похожие вопросы