Найдите все значения х при которых значения выражений √2х+8;√3Х-8 1 являются тремя последовательными членами геометрической прогрессии.
Найдите все значения х при которых значения выражений √2х+8;√3Х-8 1 являются тремя последовательными членами геометрической прогрессии.
Ответ(ы) на вопрос:
Гость
Выражения связаны между собой:
q×√(2x+8)= √(3x-8)
q×√(3x-8)= 1
возведём в квадрат каждое выражение, не забывая про область определения: х>=8/3
имеем:
q^2×(2x+8)=3x-8
q^2×(3x-8)=1
из второго выразим q^2 =1/(3х-8) и подставим в 1
(2x+8)/(3x-8)=3x-8
после преобразований имеем:
2х+8=9x^2-48x+64
или 9x^2-50x+56,получив квадратное уравнение,решаем через дискриминант,по формуле D=√b^2-4ac=√50^2-4×9×56=√2500-2016=√484=22; x1=-b+√D/2a=50+√484/2×9=50+22/18=72/18=4; x2=-b-√D/2a=50-√484/2×9=50-22/18=28/18=14/9
корни 4 и 14/9, но 14/9<8/3 - не подходит, значит ответ х=4
Таким образом при x=4 геометрическая последовательность будет такой: 16;4;1
Не нашли ответ?
Похожие вопросы