Найти наибольшее и наименьшее значение! Фото во вложении

Найти наибольшее и наименьшее значение! Фото во вложении
Гость
Ответ(ы) на вопрос:
Гость
Ну для этого нужно использовать критические точки, т.е найти производные. У логарифмов производные: logₐx=1/(x*lna) И эту производную нужно приравнять к нулю, у нас не выйдет, т.к переменная в знаменателе, значит в каждом случае подставляем пределы, которые даны. 1)y=log₅x x∈[1/5;5] y(1/5)=log₅(1/5)=-1 наименьшее значение y(5)=log₅5=1 наибольшее значение 2)y=log₀,₁x x∈[10;1000] y(10)=log₀,₁10=-1 наим. знач y(1000)=log₀,₁1000=-3 наиб. знач 3)y=log₂x+2 x∈[1/4;8] y(1/4)=log₂(1/4)+2=-2+2=0 наим. знач y(8)=log₂8+2=3+2=5 наиб. знач 4)y=log₃(x-2) x∈[3;11] y(3)=log₃(3-2)=log₃1=0 наим. знач y(11)=log₃(11-2)=log₃9=2 наиб. знач 5)y=log₀,₅(x+3/2) x∈[1/2;13/2] y(1/2)=log₀,₅(1/2+3/2)=log₀,₅2=-1 наиб. знач y(13/2)=log₀,₅(13/2+3/2)=log₀,₅8=-3 наим. знач 6)тут уже есть критическая точка y'(x)=log₂(x²-4x+6)=2x-4/((x²-4x+6)*ln2) приравнивая к нулю отбросим знаменатель, т.к он никогда не равен нулю: 2х-4=0           х=2 - т. минимума, значит в этой точке функция примет минимальное значение y(2)=log₂(2²-4*2+6)=log₂(4-8+6)=log₂2=1 - т. минимума
Не нашли ответ?
Ответить на вопрос
Похожие вопросы