Объясните как доказать теорему первого признака равенства треугольников

Объясните как доказать теорему первого признака равенства треугольников
Гость
Ответ(ы) на вопрос:
Гость
Треугольники называются равными, если их можно совместить наложением. Т.е. все вершины, стороны и углы одного треугольника совпадут с соответствующими вершинами, сторонами и углами другого треугольника. Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся. Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны. Дано: Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия: AB=KL AC=KM ∠A=∠K Доказать, что треугольник ABC равен треугольнику KLM. Д-во: Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC). Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B. Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M. Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников. А это и значит, что треугольник ABC равен треугольнику KLM. Ч.т.д.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы