Около окружности радиуса 5 описана равнобочная трапеция. Расстояние между точками касания боковых сторон равно 8. Найти площадь трапеции.

Около окружности радиуса 5 описана равнобочная трапеция. Расстояние между точками касания боковых сторон равно 8. Найти площадь трапеции.
Гость
Ответ(ы) на вопрос:
Гость
Пусть Трапеция ABCD; AB = CD; пусть точки касания AB с окружностью M, BC - K; CD - N; AD - P; у дельтоида MKNP известны обе взаимно перпендикулярные диагонали (MN = n = 8; очевидно, что KP = 2*r = 10); центр окружности радиуса r = 5 пусть O, лежит в середине KP. Площадь трапеции S = p*r = r*(AB + BC + CD + AD)/2 = r*(2*AB);   поскольку суммы противоположных сторон равны, и AB + CD = 2*AB = p ; Треугольник AOB - прямоугольный, его гипотенузу AB надо найти, высота равна OM = r; Треугольник KMP тоже прямоугольный, так как KP - диаметр.  ∠OAB = 90° -  ∠MOA; то есть ∠MOA = ∠ABO; ∠MOA = (1/2)*∠MOP = ∠MKP; получилось ∠ABO = ∠MKP;  то есть прямоугольные треугольники AOB и MKP подобны.  Гипотенуза треугольника MKP KP = 2*r; высота n/2; Ясно, что отношение высот равно отношению гипотенуз, то есть r/AB = (n/2)/(2*r); AB = 4*r^2/n; p = 2*AB = 8*r^2/n; S = 8*r^3/n; S = 125.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы