Окружность с центром O, вписанная в треугольник ABC , касается его сторон AB и AC в точках M и N . Окружность с центром Q вписана в треугольник AMN . Найдите OQ,если AB=13 BC=15 AC=14
Окружность с центром O, вписанная в треугольник ABC , касается его сторон AB и AC в точках M и N . Окружность с центром Q вписана в треугольник AMN . Найдите OQ,если AB=13 BC=15 AC=14
Ответ(ы) на вопрос:
Чтобы найти ОQ, нужно доказать, что центр Q окружности, вписанной в ΔAMN , лежит на вписанной окружности ΔABC . Отметим точку Е на меньшей дуге MN вписанной окружности ΔABC так, что дуга МЕ равна дуге NE.
Т.к. угол между касательной АМ и хордой МЕ, проведенной в точку касания M, равен половине дуги МЕ, стягиваемой этой хордой (теорема об угле между касательной и хордой), то <АМЕ=дуга МЕ/2. Аналогично <АNЕ=дуга NЕ/2=дуга МЕ/2.
Т.к.вписанный угол измеряется половиной дуги, на которую он опирается,
то
Не нашли ответ?
Похожие вопросы