Осевое сечение цилиндра - квадрат, диагональ которого равна 4 см. Найдите площадь полной поверхности цилиндра

Осевое сечение цилиндра - квадрат, диагональ которого равна 4 см. Найдите площадь полной поверхности цилиндра
Гость
Ответ(ы) на вопрос:
Гость
1)диагональ =4>сторона квадрата = по теореме пифагора cледует, что с^2=а^2+a^2. отсюда следует, что 4^2=2а^2>16=2а^2>а=корень из 8 и равно 2 корня из двух 2)площадь полной поверхности равна площадь боковой + площадь основания>2*пи*r(r+h)=2*пи*корень из двух*(корень из двух +2корня из двух)=2корня из двух*пи*3корня из двух=6корней из двух*пи p.s. должно быть правильно)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы