Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его с...

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 12. Окруж­ность ра­ди­у­са 8 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.
Гость
Ответ(ы) на вопрос:
Гость
отрезки касательных, проведенных к окружности из одной точки, равны... (((центр вписанной в угол окружности лежит на биссектрисе...))) боковая сторона АВ с продолжением будет касательной к обеим окружностям. если провести радиусы обеих окружностей к АВ,  то получится прямоугольная трапеция с основаниями-радиусами высотой, равной 8+8 (тк. отрезки касательных равны...)))  и второй боковой стороной, равной 12+r а дальше т.Пифагора: (12+r)^2 = 16^2 + (12-r)^2 (12+r)^2 - (12-r)^2 = 16^2 (12+r - (12-r))*(12+r + 12-r) = 16^2 2r * 24 = 16*16 r = 16/3 = 5 целых 1/3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы