Основание пирамиды - равнобедренный прямоугольный треугольник с гипотенузой равной √62. Две боковые грани, содержащие катеты, перпендикулярны плоскости основания, а третья наклонена к ней под углом 30 градусов. а) Найдите длин...

Основание пирамиды - равнобедренный прямоугольный треугольник с гипотенузой равной √62. Две боковые грани, содержащие катеты, перпендикулярны плоскости основания, а третья наклонена к ней под углом 30 градусов. а) Найдите длину ребер пирамиды. б) Найдите площадь боковой поверхности  и начертите саму фигуру с обозначениями
Гость
Ответ(ы) на вопрос:
Гость
АВСЕ - пирамида. ЕС - высота, потому-что АСЕ⊥АВС⊥АВЕ. АС=ВС. 2АС²=АВ²=62 АС²=62/2=31 АС=ВС=√31 - рёбра основания. СК - высота, опущенная на АВ, ∠ЕКС=30° В тр-ке САК СК=АК=АВ/2=(√62)/2 В тр-ке ЕСК cos30=СК/ЕК, ЕК=СК/cos30=√62/√3 tg30= ЕС/CK, EC=tg30·CK=√62/(2√3) - 1-е ребро. S(АВЕ)=АВ·ЕК/2=62/(4√3)=31/(2√3) ед² S(АСЕ)=S(ВСЕ)=АС·ЕС/2=√31·√62/(2√3)=√1922/(2√3) ед² Sбок=S(АВЕ)+S(АСЕ)+S(ВСЕ)=(31+2√1922)/(2√3)≈34.26 ед² - боковая площадь. В тр-ке ЕАС ЕА²=ЕС²+АС²=62/12+31=434/12 ЕА=ЕВ=√434/(2√3)≈6.01 - 2-е и 3-е рёбра.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы