Основания равнобедренной трапеции равны 7 и 17, а ее площадь равна 144. Найдите боковую сторону трапеции.С объяснениями пжл)

Основания равнобедренной трапеции равны 7 и 17, а ее площадь равна 144. Найдите боковую сторону трапеции.С объяснениями пжл)
Гость
Ответ(ы) на вопрос:
Гость
Решение: Найдём высоту трапеции. Площадь трапеции равна: S=(a+b)*h/2 где а и b- основания трапеции Из этой формулы найдём высоту (h), подставив в её известные нам данные: 144=(7+17)*h/2 144=(24)*h/2 144*2=24*h 288=24h h=288 : 24 h=12 Если мы опустим высоты на нижнее основание трапеции, получим прямоугольник и два равных прямоугольных треугольников, так как трапеция равнобедренная. Нижние катеты прямоугольных треугольников равны по : (17-7) : 2=10:2=5 Теперь нам известны у прямоугольных треугольников два катета: -высота, которая является катетом, равная 12 - второй нижний катет, равный 5 Боковая сторона трапеции является гипотенузой прямоугольного треугольника, которую мы найдём по Теореме Пифагора c²=a²+b² c²=12²+5²=144+25=169 Отсюда: с=√169=13- боковая сторона трапеции Ответ: Боковые стороны данной равнобедренной трапеции равны по 13
Не нашли ответ?
Ответить на вопрос
Похожие вопросы