Отрезки ab и cd являются хордам окружности. найдите расстояние от центра окружности до хорды cd, если ab=40, cd=42, а расстояние от центра окружности до хорды ab равно 21. решение и пояснения как решили

Отрезки ab и cd являются хордам окружности. найдите расстояние от центра окружности до хорды cd, если ab=40, cd=42, а расстояние от центра окружности до хорды ab равно 21. решение и пояснения как решили
Гость
Ответ(ы) на вопрос:
Гость
Построим окружность с центром в точке о и проведем хорды АВ и СД удовлетворяющие условиям задачи. Найдем радиус данной окружности: Построим радиусы ОА и ОВ, а также ОЕ- расстояние от центра окружности до хорды АВ (ОЕ ⊥ АВ) Рассмотрим получившийся треугольник ОАВ – равнобедренный, так как ОА=ОВ (радиусы окружности). Так как ОАВ равнобедренный, то ОЕ -  является и высотой и медианой. Значит АЕ=АВ/2=40/2=20 Рассмотрим треугольник ОАЕ: угол ОЕА – прямой. По теореме Пифагора найдем ОА: ОА= √(АЕ^2+OE^2)= √(20^2+21^2)= √(400+441)= √841=29 – Мы нашли радиус окружности.                           Теперь находим расстояние от центра окружности до хорды СД: Построим радиусы ОС и ОД, а также ОF- расстояние от центра окружности до хорды СД (ОF ⊥ СД) Рассмотрим получившийся треугольник ОСД – равнобедренный, так как ОС=ОД (радиусы окружности). Так как ОCД равнобедренный, то ОF -  является и высотой и медианой.  Значит СF=СД/2=42/2=21 Рассмотрим треугольник ОCF: угол ОFC – прямой. По теореме Пифагора найдем ОF: OF=√(OC^2-CF^2)= √(29^2-21^2)= √(841-441)= √400=20 Ответ: расстояние от центра окружности до хорды СД равно 20
Не нашли ответ?
Ответить на вопрос
Похожие вопросы