Отрезок КА – перпендикуляр к плоскости АВС. Точка М - середина ВС. КМ перпендикулярно ВС. АВ=ВС а) Докажите, что треугольник АВС - равносторонний. б) Докажите перпендикулярность плоскостей КВС и КАМ. в) Найдите площадь треуголь...

Отрезок КА – перпендикуляр к плоскости АВС. Точка М - середина ВС. КМ перпендикулярно ВС. АВ=ВС а) Докажите, что треугольник АВС - равносторонний. б) Докажите перпендикулярность плоскостей КВС и КАМ. в) Найдите площадь треугольника АВС, если ВК=8, КА=√39, ВС=6.
Гость
Ответ(ы) на вопрос:
Гость
КМ-высота, мед => треуг ВКС-равнобедрен (по теор о равноб треугольн) =>уголКВС=уголВСК=60 М-сер стор ВС=>ВМ=МС=3; МК=МС*тангенс60=3√3(по соотношению углов в прямоуг треуг) ; АМ=3(по теореме Пиф) расписать не могла - квадраты здесь не ставятся, можно по электронке там точнее будет; КС=6 (по теореме косинусов) ; АС=3 корень из2; АВ=3 корень из2;=>треугАВС - равнобедрен=>АМ - медиана, высота (по теорем о равноб треуг) ; АМ перпендик ВС АМ принадл плКАМ; КМ принадл плВКС следовательно плоскасти перпендикул; площадь треугольник АСВ=АМ*ВМ=3*3=9
Не нашли ответ?
Ответить на вопрос
Похожие вопросы