Площадь боковой поверхности правильной четырехугольной пирамиды SABCD с основанием ABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения пирамиды плоскостью SAC.

Площадь боковой поверхности правильной четырехугольной пирамиды SABCD с основанием ABCD равна 108, а площадь полной поверхности этой пирамиды равна 144. Найдите площадь сечения пирамиды плоскостью SAC.
Гость
Ответ(ы) на вопрос:
Гость
Воспользуемся чертежом от другой задачи. Он подходит, только в вершине пирамиды нужно букву Е заменить на S. Площадь треугольника SAC: S=АС·SO/2. Площадь основания пирамиды: Sосн=Sполн-Sбок=144-108=36. Sосн=АВ² ⇒ АВ=√Sосн=√36=6. Sбок=Р·l/2, где l - апофема.  Sбок=4АВ·SM/2=2AB·SM ⇒ SM=Sбок/2АВ=108/(2·6)=9. МО=ВС/2=6/2=3. В тр-ке SMO SO²=SM²-MO²=9²-3²=72. SO=6√2. АС - диагональ квадрата. АС=АВ√2=6√2. Площадь ΔSAC: S=АС·SO/2=6√2·6√2/2=72/2=36 (ед²) - это ответ.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы