Помогиите: две окружности имеют общую точку М и общую касательную в этой точке. Прямая АВ касается одной окружности в точке А, а другой в точке В. Докажите что точка М лежит на окружности с диаметром АВ.

Помогиите: две окружности имеют общую точку М и общую касательную в этой точке. Прямая АВ касается одной окружности в точке А, а другой в точке В. Докажите что точка М лежит на окружности с диаметром АВ.
Гость
Ответ(ы) на вопрос:
Гость
Надо доказать, что угол АМВ прямой. Делаем такие построения - проводим радиусы О1А и О2В в точки касания, проводим линию центров О1О2 (она в данном случае не понядобится, но с ней спокойнее:)) и обозначаем точку пересечения общих касательных АВ и той, что, проходит через М, как К. (Ясно, что МК перпендикулярно О1О2, это тоже не приголится). Важно вот что. угол АМК = (угол АО1М)/2 (угол между касательной и хордой и центральный угол этой хорды, один измеряется половиной дуги АМ, другой - целой дугой АМ). Аналогично угол ВМК = (угол ВО2М)/2.  но поскольку О1А II О2В, угол АО1М + угол ВО2М = 180 градусов, поэтому угол АМВ равен 90 градусов. Поэтому если построить на АВ окружность, как на диаметре, точка М попадет на эту окружность.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы