Ответ(ы) на вопрос:
Гость
∠КРЕ = 30° (как смежный с внешним углом 150°)
Катет, лежащий напротив угла 30° равен половине гипотенузы.
Значит, РЕ = 2КЕ = 18
По теореме Пифагора находим КР = [latex] \sqrt{324 - 81} = \sqrt{243} = 9 \sqrt{3} [/latex]
Для треугольника КСР сторона КР является гипотенузой.
Опять-таки катет лежащий напротив угла 30° равен половине гипотенузы.
КР = 2КС
КС = 4,5[latex] \sqrt{3} [/latex]
РС = [latex] \sqrt{243 - 60,75} = \sqrt{182,25} = \sqrt{729*0,25} = 27 * 0,5 = 13,5[/latex]
СЕ = РЕ - РС = 18 - 13,5 = 4,5
Про угол С не понял. Но если угол С рассматривается как сумма углов КСЕ и КСР, то ∠С = 180°
4. Ну, понятно, что угол АВС, как смежный с внешним углом равен 30°.
Угол САВ равняется 60°, так как сумма углов в треугольнике равна 180°.
Угол САВ = 180° - 90° - 30° = 60°
А вот дальше интересный момент. В прямоугольном треугольнике длина биссектрисы большего угла равна 2/3 от длины противолежащего катета. То есть ВС = 30. А катет лежащий напротив угла 60° больше гипотенузы в √3. Значит, АВ = 20√3
А АС, как нам уже известно - это половина гипотенузы большого треугольника, то есть 10√3.
Удачи!
Не нашли ответ?
Похожие вопросы