Помогите пожалуйста:))) Боковые стороны АB и CD трапеции АBCD равны соответственно 8 и 10, а меньшее основание BC равно 3. Найти площадь трапеции АBCD, если известно, что биссектриса угла CDА делит боковую сторону в отношении 9...

Помогите пожалуйста:))) Боковые стороны АB и CD трапеции АBCD равны соответственно 8 и 10, а меньшее основание BC равно 3. Найти площадь трапеции АBCD, если известно, что биссектриса угла CDА делит боковую сторону в отношении 9:7, считая от большего основания.
Гость
Ответ(ы) на вопрос:
Гость
Тут хитро подобраны значения. Но и при произвольных значениях сторон и заданного отношения принцип решения тот же. Можно пойти разными путями, но смысл один и тот же - надо найти нижнее (большее основание). Пусть биссектриса угла CDA пересекает AB в точке M. Тогда AM/BM = 9/7; BM = AB*7/(9 + 7) = 7/2; AM = 9/2; Если провести MN II BC, точка N - на CD, то CN/DN = BM/AM = 7/9; и DN = 90/16; CN = 70/16; Так как углы NMD и NDM оба равны углу MDA, треугольник NMD равнобедренный, и DN = MN = 90/16; Дальше можно опять делать по разному, но суть одна. Например, так. Пусть CE II AB; точка E - на AD; и СЕ пересекает MN в точке K; тогда KN = MN - BC = 42/16; и DE/KN = DC/CN; DE = (42/16)*(16/7) = 6; Вот тут надо остановиться. Решение конкретной этой задачи уже на ладони :) Треугольник CED имеет стороны DE = 6; CE = 8; CD = 10; это египетский треугольник, то есть CE перпендикулярно AD; Ясно, что площадь трапеции (в данном случае - прямоугольной трапеции) равна 3*8 + 6*8/2 = 48; (или если охота - основания 3 и 6+3 = 9, высота 8, площадь (3 + 9)*8/2 = 48) Теперь вопрос - а что делать, если бы сложилось не так хорошо, и трапеция не оказалась бы прямоугольной? Основания её все равно нашлись - все четыре. Если достроить трапецию до треугольника, продлив боковые стороны, то не сложно найти и все стороны этого треугольника, а также площадь подобного ему треугольника, с основанием BC. Площадь трапеции равна разности их площадей, которые находятся по формуле Герона (достаточно искать площадь одного - треугольники подобны, и коэффициент подобия их равен отношению оснований).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы