Помогите пожалуйста, ОЧЕНЬ НАДО! Стороны треугольника равны 25; 29 и 36 см. Точка вне плоскости треугольника удалена от каждой из его сторон на 17 см. Найти расстояние от данной точки до плоскости треугольника.

Помогите пожалуйста, ОЧЕНЬ НАДО! Стороны треугольника равны 25; 29 и 36 см. Точка вне плоскости треугольника удалена от каждой из его сторон на 17 см. Найти расстояние от данной точки до плоскости треугольника.
Гость
Ответ(ы) на вопрос:
Гость
У нас получилась пирамида с апофемой А каждой грани, равной А =17, высота пирамиды неизвестна, обозначим её Н. Если наклонные (т.е. апофемы) равны, а по условию это так, то равны и их проекции на плоскость треугольника. Эти проекции представляют собой радиусы вписанной в треугольник окружности, поскольку они перпендикулярны сторонам треугольника и равны между собой. Радиус вписанной окружности r = √((p -a)(p - b)(p - c)/p) a = 25, b = 29, c = 36 полупериметр р = (25 + 29 + 36)/2 = 45 r = √(20·16·9)/45 = 8 Тогда расстояние от точки до плоскости(высота пирамиды) равна Н = √(А² - r²) = √( 17² - 8²) = 15 Ответ: 15 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы