Помогите пожалуйста решить задачу КВАДРАТНЫМ УРАВНЕНИЕМ и с объяснением: Двум рабочим было поручено изготовить партию некоторых деталей. После того как первый рабочий проработал 7ч, а второй -4 ч, стало известно, что выполнено...
Помогите пожалуйста решить задачу КВАДРАТНЫМ УРАВНЕНИЕМ и с объяснением:
Двум рабочим было поручено изготовить партию некоторых деталей. После того как первый рабочий проработал 7ч, а второй -4 ч, стало известно, что выполнено 5/9 части всей работы. А после того как они проработали вместе ещё 4ч, оставалось выполнить 1/18 часть всей работы. За сколько часов каждый рабочий в отдельности выполнил бы всю работу?
Спасибо большое
Ответ(ы) на вопрос:
Гость
Принимаем всю работу за единицу.
v1 - производительность первого рабочего
v2 - производительность второго
t1 = 7 часов
t2 = 4 часа
Система такая:
v1 * t1 + v2 * t2 = 5/9
1 - (v1 + v2) t2 - v1 * t1 - v2 * t2 = 1/18
Во втором уравнении системы переносим единицу вправо и домножаем всё уравнение на (-1)
v1 * t1 + v2 * t2 = 5/9
(v1 + v2) t2 + v1 * t1 + v2 * t2 = 17/18
В первом уравнении выражаем v1 через v2; во втором группируем слагаемые по производительностям
v1 = (5/9 - v2 * t2) / t1
v1 * (t1 + t2) + 2 * v2 * t2 = 17/18
Подставляем во второе уравнение выраженное значение v1
v1 = (5/9 - v2 * t2) / t1
(t1 + t2) * (5/9 - v2 * t2) / t1 + 2 * v2 * t2 = 17/18
Дальше во втором уравнении нужно выразить v2 и подставить вместо t1 и t2 реальные значения.
Время, за которое справился бы второй работник в одиночку - это (1 / v2)
Потом нужно найденное значение v2, а также реальные значения t1 и t2 подставить в первое уравнение и найти v1.
Время, за которое справился бы первый работник в одиночку - это соответственно (1 / v1)
Не нашли ответ?
Похожие вопросы