Постройте график функции y=|x-1|-|x+2| и определите, при каких значениях k прямая y=kx имеет с графиком ровно 3 общие точки. С полным решением пожалуйста.

Постройте график функции y=|x-1|-|x+2| и определите, при каких значениях k прямая y=kx имеет с графиком ровно 3 общие точки. С полным решением пожалуйста.
Гость
Ответ(ы) на вопрос:
Гость
При x < -2 будет |x-1| = 1 - x; |x+2| = -x - 2 y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3 При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1 При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2 y = x - 1 - (x + 2) = x - 1 - x - 2 = -3 Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3 При k >= 0 прямая пересекается в 1 точке. При -2 < k < 0 прямая пересекается с графиком в 3 точках. При k = -2 прямая совпадает с частью графика на промежутке [-2; 1]. При k < -2 прямая опять пересекается с графиком в 1 точке.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы