ПОЖАЛУЙСТА ПОМОГИТЕ!!Дан равнобедренный треугольник АВС с основанием АС.На сторонах АВ,ВС,АС отмечены точки Д,Е,Р соответственно так что отрезки АЕ и ДР имеют общую середину. Докажите,что угол ДЕР равен углу ...
ПОЖАЛУЙСТА ПОМОГИТЕ!!
Дан равнобедренный треугольник АВС с основанием АС.На сторонах АВ,ВС,АС отмечены точки Д,Е,Р соответственно так что отрезки АЕ и ДР имеют общую середину. Докажите,что угол ДЕР равен углу ВСА.
ОГРОМНЕЙШЕЕ СПАСИБО!!!!!!
Ответ(ы) на вопрос:
Гость
Если отрезки АЕ и ДР имеют общую середину, например точку О, то отрезки ДО=ОР и ОЕ=ОА. Треугольники ДОЕ и АОР-равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ- по условию, углы ДОЕ и АОР- равны как вертикальные), значит угол ДЕО=углу ОАР. Треугольники АДО и ЕОР тоже равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ - по условию, углы АОД и ЕОР равны как ветикальные), значит угол ДАО= углу РЕО. из этого следует, что угол ДЕР= углу ДАР. по условию треугольник равнобедренный, значит по свойству равнобедренного треугольника углы при основании равны, т.е. угол ВАС= углу ВСА, т.к. угол ДЕР = углу ДАР (ВАС), значит он равен и углу ВСА. что и требовалось доказать.
Не нашли ответ?
Похожие вопросы