Правильный треугольник со стороной 10 см вписан в окружность. Найдите площадь кругового сектора, соответствующего центральному углу треугольника.

Правильный треугольник со стороной 10 см вписан в окружность. Найдите площадь кругового сектора, соответствующего центральному углу треугольника.
Гость
Ответ(ы) на вопрос:
Гость
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
Не нашли ответ?
Ответить на вопрос
Похожие вопросы